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Robust platform for engineering pure-quantum-state transitions in polariton condensates
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We report on pure-quantum-state polariton condensates in optical annular traps. The study of the underlying
mechanism reveals that the polariton wave function always coalesces in a single pure quantum state that,
counterintuitively, is always the uppermost confined state with the highest overlap with the exciton reservoir.
The tunability of such states combined with the short polariton lifetime allows for ultrafast transitions between
coherent mesoscopic wave functions of distinctly different symmetries, rendering optically confined polariton
condensates a promising platform for applications such as many-body quantum circuitry and continuous-variable
quantum processing.
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Polaritons in semiconductor microcavities are light-matter
bosonic quasiparticles formed by strong coupling of cavity
photons and intracavity excitons [1]. Their excitonic part gives
rise to strong interactions essential for fast thermalization and
condensation, while their photonic part contributes to their
very low effective mass (5 × 10−5me), allowing for high-
temperature condensation [2]. Polariton condensates have
been observed both under nonresonant optical excitation [3]
and more recently under electrical injection of carriers [4,5].
However, polaritons populate a two-dimensional plane where
a true Bose phase transition is theoretically possible only
in the presence of a confining potential [6], and this was
first demonstrated with a stress-induced trap [7]. Unlike the
weak atom-atom interactions in cold atomic Bose-Einstein
condensates (BECs), interparticle interactions in a semi-
conductor microcavity are strong enough to substantially
renormalize polariton self-energy, experimentally observed
as a local blueshift of the polariton spectrum. Variations
of the polariton density in the plane of the cavity result
in a potential landscape that can be externally controlled
through real-space modulation of the optical excitation beam.
The malleability of the potential landscape can be used to
imprint scattering centers [8] and devise polariton traps [9,10]
and gates [11]. The dynamics of polariton condensates in
externally modulated potential landscapes can lead to trapped
states, standing polariton waves, and phase locking of remote
condensates in nontrivial configurations [9,12–16]. Extensive
control over mesoscopic polariton wave functions and their
transitions between quantum states, coupled with the extensive
propagation of polaritonic flows [8,17], leads to applications
in quantum control, quantum circuits, and on-chip quantum
information processing [18,19].

In this paper, we investigate the dynamics of pure quan-
tum state transitions of polariton condensates under optical
confinement. We utilize a ring-shaped, nonresonant optical
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excitation scheme to create a size-tunable annular potential
trap. Under continuous-wave excitation, we study the steady-
state regime of trapping and condensate formation. We control
the height of the potential trap by tuning the optical excitation
density and observe that, at coherence threshold, polaritons
coalesce preferentially at the uppermost confined energy state
that has the largest wave function overlap with the exciton
reservoir that forms the trap barriers. To confirm that excited-
state polariton condensates are realized predominantly by
polariton confinement in the optically induced potential trap,
we study the transient dynamics of the formation mechanism.
For this purpose, we change from continuous-wave to pulsed
excitation, while keeping all other parameters unaltered,
and time-resolve the evolution of the spatial polariton state.
Under pulsed excitation, the height of the potential barrier
is transiently diminishing following the decay of the exciton
reservoir. We observe that the mesoscopic polariton conden-
sate switches between states, progressively transforming to
the highest available confined energy state. The experimental
observations are accurately reproduced using the extended
Gross-Pitaevski equation.

Non-ground-state condensates of spatially confined polari-
tons were previously observed in optical defect sites and in pil-
lar microcavities, under Gaussian-shaped nonresonant optical
excitation incident to the confinement area [20–22]. While gain
competition in thermodynamic equilibrium has been predicted
to give rise to occupation of a single or several excited states
[23,24], in both cases, excited-state condensates were shown
to be driven by the dynamics of energy relaxation across the
confined energy states, resulting in multistate condensation.
In the case of ring-shaped excitation, two characteristically
different regimes of polariton condensates have been realized.
For ring radii comparable to the thermal de-Broglie wave-
length, a phase-locked standing-wave condensate colocalized
with the excitation area was observed [12]. For ring radii
comparable to the polariton propagation length in the plane
of the cavity, the excitation ring acted as a potential barrier
and a Gaussian-shaped ground-state polariton condensate was
realized [9]. Christofolini and co-workers examined the tran-
sition between phase-locked and trapped condensates using
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FIG. 1. (Color online) False color-scale experimental (a)–(e) and theoretical (f)–(j) states of polariton condensates. (a),(f) �00, (b),(g) �11,
(c),(h) �01, (d),(i) �02, and (e),(j) �03. ε denotes the ellipticity of individual configurations.

multiple-excitation spots and a ring-shaped excitation pattern
[13]. Despite earlier work by Manni et al. [12], the authors
claimed that, for ring-shaped pumps, no phase-locked state
is geometrically possible, and that when the spacing between
the pumps is reduced, the trapped condensate collapses into a
Gaussian-shaped ground state. Here, we show that under ring-
shaped excitation, the formation of excited-state condensates
is driven by polariton confinement in the linear potentials and
that the presence of non-ground-state polariton condensates
does not necessitate asymmetries in the shape and/or power
distribution of the ring excitation. The dependence of the
state selection on the height of the trap’s barrier and shape at
threshold provides a robust platform for engineering switches
of mesoscopic multiparticle coherent states.

The experimental configuration that produces an annular
beam of zero angular momenta consists of a double-axicon
arrangement. A variable telescope is used to control the radii
of the excitation beam that we project on the sample. The
excitation and detection configuration and the microcavity
sample are described in Ref. [9]. The microcavity is held in a
cold finger cryostat operating at 6 K. We study the steady-state
dynamics under nonresonant excitation at 752 nm using a
single-mode quasi-continuous-wave (cw) laser (2% on-off
ratio at 10 kHz). The microcavity used in these experiments is
a high-Q-factor (>15 000) 5λ/2 GaAs/AlGaAs microcavity
with four triplets of 10 nm GaAs quantum wells, with a Rabi
splitting of 9 meV and a cavity lifetime of 7 ps, as described in
Ref. [25]. All experiments were performed for a small negative
detuning range of −7 � d � −5 meV.

Figures 1(a)–1(e) show the spatial profiles of mesoscopic
wave functions for a range of excitation radii and asymmetries,
characterized by the ellipticity and radius of the excitation ring,
at the coherence threshold that defines the depth of the trap
via the interactions in the reservoir. Theses states resemble
the TEM modes of a harmonic oscillator, and in what follows
we will adapt their symbolism to annotate the state of the
polariton wave function. For an excitation ring with a radius
of ∼10 μm we observe a ground-state polariton condensate
[Fig. 1(a)], as in Ref. [9], which remains in the ground
state as long as the long axis of the asymmetric excitation
does not exceed ∼10 μm. For larger excitation ring radius
(∼17 μm) and similar ellipticity as in Fig. 1(a) (ε = 0.22) at
the coherence threshold we observe that polaritons coalesce at
a higher excited state (ψ11) as shown in Fig. 1(b). We note that

the symmetry of the excited-state wave function is robust to
small asymmetries in the excitation ring (0 < ε < 0.23) and
the transition from ground to nonground polariton condensates
is predominantly dependent on the radius of the ring. By
increasing the ring radius and the asymmetry of the excitation,
it is possible to observe excited-state polariton condensates
as shown in Figs. 1(a)–1(c) On top of each panel we have
annotated the ellipticity of the excitation ring. Interferometric
measurements of the excited states ψ01, ψ02, and ψ03 confirm
that these are coherent mesoscopic wave functions of extended
condensates [Figs. 2(a)–2(c)].

We investigate the dependence of the quantum-state selec-
tivity on the barrier height by varying the nonresonant excita-
tion density of a geometrically fixed, ring-shaped, asymmetric
excitation profile. We use an excitation ring of radius ∼16 μm
and ε = 0.27 that at coherence threshold produces the �04 po-
lariton state as shown in Fig. 3(a). By increasing the excitation
density above the coherence threshold, while keeping all other
parameters the same, we observe the transition from �04 to
�05 [Fig. 3(b)]. The order of the latter state is clearly revealed
in Fig. 3(c), where we plot the normalized spatial profiles
along the white dashed lines of the real-space intensity images
of Figs. 3(a) and 3(b). Figure 3(c) shows the presence of an
extra node at the higher excitation density indicative of �05. In
Fig. 3(d) we plot the energy shift of the condensate in the transi-
tion from �04 to �05 with respect to its energy at the coherence
threshold [�(EP − EPth )]. A sharp increase of the energy shift
(∼45 μeV ) is observed in Fig. 3(d) at P ∼1.12Pth. Within
the gray stripe intensity fluctuations of the excitation beam
artificially blur the two states. The top panels in Figs. 3(a) and

FIG. 2. (Color online) Interference patterns of trapped polariton
condensates: (a) �01, (b) �02, and (c) �03. The interference patterns
were obtained with a retroreflector configuration.
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FIG. 3. (Color online) Evolution of �04 for increasing excitation
density. Bottom panel: (a) �04 at P = 1.03Pth. (b) Subsequent
increase of the power results at the appearance of �05. Top panel:
Schematic representation of the confined energy states for two
different barrier heights. (c) Profiles of the wave function for different
excitation densities extracted along the dashed white lines in (a) and
(b). (d) Corresponding energy difference with respect to the energy at
the coherence threshold for increasing excitation power normalized
at the coherence threshold power Pth. Inset in (d) shows the spectra
of the points denoted by the arrows.

3(b) depict the calculated energy levels for the trap shape and
the corresponding probability density of the confined states. In
both panels, the red-filled probability density corresponds to
the occupied state. It is worth noting here the greater overlap
of the probability density of the highest energy level [�04 in
Fig. 3(a) and �05 in Fig. 3(b)] with the reservoir compared
to the lowest energy levels. Evidently, with increasing barrier
height a polariton condensate is realized at the next confined
energy level as a pure quantum state that can be singularly
described by the principal quantum number n (�0,n+1).

We explore the robustness of the formation of pure quantum
states against density fluctuations in the exciton reservoir,
by extending our study from the excitation-density-dependent
switching between successive states in the dynamic equilib-
rium regime to transitions in the time domain under nonres-
onant pulsed excitation. We use a ring-shaped nonresonant
200 fs pulse at 755 nm with ∼11 μm radius of the major
axis and ε = 0.3 at ∼1.6Pth. We record the spatiotemporal
dynamics of the emission and observe the formation of the
�01 polariton state and its transition to �00 [26]. We set the
transition point to define the zero time frame for the rest of
our analysis. Figure 4(a) shows a snapshot of the �01 state
at −30 ps. At later times, the two lobes of the �01 state
appear to move closer together, and the condensate rapidly
transforms to the ground polariton state (�00) of Fig. 4(b).
The decrease of the density in the barriers in the time domain
results in a shallower trap in which the �01 state is no
longer confined, leading to a polariton condensate at the next
available state, here the ground state �00. We spectrally and
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FIG. 4. (Color online) False color-scale real-space tomographic
frames in the time domain. (a) �01 state at −30 ps and (b) subsequent
transition to �00 at 30 ps. (c) Intensity-normalized time evolution of
the emission energy showing the characteristic energy jump at the
transition threshold.

time-resolve the decay of emission at normal incidence with
an angular width corresponding to |k| � 1.4 μm and observe
a sharp energy shift from �01 to �00 as shown in Fig. 4(c).
This dynamic transition further illustrates that under optical
confinement a polariton condensate spontaneously occurs at
a higher confined state as defined by the barrier height of the
trap, and that the transition to the ground state is hindered
solely by the existence of higher energy levels.

The time-resolved dispersion images from which the energy
evolution of the system was extracted [Fig. 4(c)] are presented
in Figs. 5(a)–5(c). The appearance of the �01 mode is accom-
panied by a distinct doublet mode in the dispersion [Fig. 5(a)],
which corresponds to the counterpropagating components of
the standing wave [14]. As the barrier dynamically decays
and the �00 mode is switched on as previously discussed, it
quickly overtakes �01 in intensity at ∼0 ps. The first excited
state quickly dissipates after this point with the polariton
lifetime, and the dispersion is dominated by the emission of
the trap ground state. Interestingly, Figs. 5(a)–5(c) also reveal
distinct satellite modes at the same energy of the confined
modes but for greater in-plane wave vector. For quantum
states in traps with a finite barrier width, coherent tunneling
modes are a characteristic feature. Moreover, in our system
these modes will be accelerated by the potential landscape
outside the trap eventually acquiring momentum characteristic
of the difference between the energy level in the trap and of
the low-density polariton dispersion of the system outside
the excitation region [Fig. 5(d)]. From this description it
becomes clear that the tunneling modes are expected to be
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FIG. 5. (Color online) Polariton dispersion at −30 ps (a), 0 ps, (b), and 30 ps (c). White dotted lines in (a) denote the integrated area
from which Fig. 4(c) was extracted. (d) Schematic representation of the momentum acquired by polaritons tunneling outside the potential
trap (potential and dispersion energy not in scale). (e) Intensity-normalized time evolution of kx , showing the characteristic �kx jump of the
tunneling mode.

at the same energy but with higher momentum, as observed in
Figs. 5(a)–5(c).

Integrating the time-dispersion images over energy, while
intensity-normalizing for every time frame, we compile the
time evolution of kx [Fig. 5(e)]. This analysis reveals the
expected �kx difference of the tunneling modes of the two
states. Intuitively, the relative (to the trapped state) intensity
of the �01 tunneling mode at the transition is substantial, as
the width of the barrier goes to zero at this energy level. In
contrast to the tunneling amplitude of the ground state which
is effectively suppressed as the potential width at the �01

energy level is still significant. Nevertheless, following the
dynamic dissipation of the barrier, due to the decay of particles
as well as draining of the reservoir by the condensate, we
observe a continuous increase of the relative intensity of the
tunneling amplitude of the ground state at kx ∼ 1.4 μm−1.
The observation of a strong tunneling component from the E01

energy just before the transition verifies that the barrier width
for this level is indeed minimal and that �01 is close to the rim
of the trap barrier, further corroborating our interpretation.

The system can be theoretically modeled with a nonlinear
Schrödinger equation, namely, the Gross-Pitaevski equation.
Simulations with the Gross-Pitaevski equation with a potential
similar to the one from the experimental measurements in
our system qualitatively reproduce the states recorded
experimentally. Using a potential V (r) that consists of the
exciton-exciton interactions in the reservoir, which blueshift
the polariton energy levels, and of the polariton-polariton
interactions in the condensate, the Hamiltonian of the
system is

H (r) = T + V (r), (1)

V (r) = Vr (r) + Vc(r), (2)

Vr (r) = NrUex-exfr (r), (3)

where Nr is the density of excitons in the reservoir, Uex-ex is
the exciton-exciton interaction strength, fr (r) is the spatial
distribution of the exciton reservoir taking into account exciton
diffusion beyond the pump spot, and Vc = Upol-pol|ψn(r)|2
with Upol-pol the polariton-polariton interaction strength and
ψ(r) the condensate wave function. In addition to kinetic
and potential energy terms in the above Hamiltonian, to
account for polariton spatial dynamics, a generalization of
the extended Gross-Pitaevskii equation is required to include
incoherent pumping and decay [27]. In continuous-wave
experiments one expects the excitation of a steady state of hot
excitons with the spatial profile set by the optical pumping
extended by exciton diffusion. One can then make use of the
Landau-Ginzburg approach for describing the dynamics of
the two-dimensional (2D) polariton wave function [28]:

i�
dψ(r,t)

dt
=

[
− �

2∇̂2

2mP

+ (Upol-pol − i�NL)|ψ(r,t)|2

+ (Upol-ex + ir)Nrfr (r) − i�

2

]
ψ(r,t)

+ i��[ψ(r,t)]. (4)

Here mP is the polariton effective mass and fr (r) describes the
2D spatial distribution of Nr excitons. The condensation rate r

describes the gain of polaritons in the presence of the exciton
reservoir. The polaritons experience both a linear decay �

and nonlinear loss �NL, which represents the scattering of
polaritons out of the condensate when its density is high
[28]. The final term in Eq. (4) represents a phenomenological
energy relaxation [29] in the system, which can play an
important role when non-ground-state polaritons interact with
a potential gradient [30–32]:

�[ψ(x,t)] = −λNrfr (r)[ÊLP − μ(r,t)]ψ(x,t), (5)
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where λ determines the strength of energy relaxation [29,31]
and μ(r,t) is a local effective chemical potential that conserves
the polariton population [29]. Kinetic energy relaxation of
this form was derived with a variety of methods [33,34]
and offers a simple model for the qualitative description
of our experiment. We note, however, that this model does
not distinguish between different mechanisms of energy
relaxation, which may have different power dependences [35].

Fixing Nrfr (r) to represent a ring-shaped excitation (with
slight asymmetry), the numerical solution of Eq. (4) gives
the steady-state intensity profiles shown in Figs. 1(f)–1(j).
Different configurations are accessed by varying the spatial
distribution [fr (r)] and population (Nr ) of hot excitons, as in
the experiment [36]. The simulations support that excited-state
condensation occurs preferentially at the uppermost confined
energy state.

Although it cannot be explicitly verified that there is
no available state in the trap above the condensate energy
level, since the polariton potential landscape is not directly
measurable, the evidence presented from the steady-state
switching and the transient study including the dynamic
behavior of the tunneling components of the system, as
well as the theoretical simulations and the calculations for
the condensate reservoir overlap [26], strongly supports our
interpretation that polaritons condense in the highest available
energy state within the optical trap.

In conclusion, we have investigated the dynamics of polari-
ton condensates under optical confinement and observed that,
in contrast to previously reported excited-state condensation in

defect traps and pillar structures, injection of polaritons from
the trap barriers leads to the formation of a pure quantum-
confined state with a mesoscopic coherent wave function above
the condensation threshold. This behavior is in agreement
with theoretical expectations for a true Bose condensate that
is anticipated to resist multimode behavior [37,38] in the
presence of interparticle interactions. Moreover, we revealed
that the state selectivity of this system strongly depends on
the geometric properties of the trap and have demonstrated a
highly controllable switching between successive mesoscopic
coherent quantum-confined states, in the dynamic equilibrium
regime and in the time domain. These results highlight the
capability of tailoring and manipulating on-chip pure quantum
states in semiconductor microcavities that can facilitate the
implementation of polariton bosonic cascade lasers [39].
Taking into account that the extensive propagation [38] as
well as the susceptibility of the polaritonic flow to the potential
landscape [40] have been widely demonstrated, these results
also indicate the potential for engineering confined condensate
lattices, coupled by their respective tunneling amplitudes.
Moreover, the coupling strength in this architecture can
be finely tuned by controlling the barrier height, enabling
the emergence of applications such as many-body quantum
circuitry and quantum simulators.

A.A. acknowledges useful discussions with W. Langbein
and S. Portolan. P.S. acknowledges funding from Greek GSRT
ARISTEIA program Apollo.
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