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We investigate the phase coupling between spatially separated polariton condensates under nonresonant
optical pulsed excitation. In the simple case of two condensates, we observe phase locking either in
symmetric or antisymmetric states. We demonstrate that the coupling symmetry depends both on the
separation distance and outflow velocity from the condensates. We interpret the observations through
stimulated relaxation of polaritons to the phase configuration with the highest occupation. We derive an
analytic criterion for the phase locking of a pair-polariton condensate and extend it to polariton multiplets.
In the case of three condensates, we predict theoretically and observe experimentally either in-phase
locking or the appearance of phase winding with phase differences of�2π=3 between neighbors. The latter
state corresponds to a vortex of winding number �1 across the three polariton condensates.
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I. INTRODUCTION

In semiconductor microcavities in the strong-coupling
regime, cavity photons and intracavity excitons mix to a
breed of bosonic optoelectronic excitations, called polar-
itons [1,2]. Below the temperature of quantum degeneracy,
polaritons undergo a thermodynamic phase transition
wherein phase correlations spontaneously occur and build
up to a macroscopic coherent state [3,4]. This process
is an example of spontaneous symmetry breaking in a
many-body system [5–7]. Polaritons benefit from the low
effective mass of cavity photons that enables high-
temperature condensation, and the strongly interacting
nature of excitons, rendering polariton condensates a
promising test bed for many-body quantum technologies.
Unlike atomic Bose-Einstein condensates [8,9], polaritons
can condense out of thermal equilibrium [10]. Polariton
condensates have been realized in several material systems
under optical excitation including CdTe, GaAs, GaN, ZnO,
and organic semiconductors [11–16], while most recently,

polariton condensation was observed under electrical
injection [17]. Upon condensation, polaritons experience
an increase in in-plane momentum due to their repulsion
from hot excitons and other polaritons [18,19]. In the case
of multiple, spatially separated condensates, out-flowing
polaritons result in coupling across the multiplet of
condensates.
In this article, we investigate the mechanism of coupling

between spatially separated polariton condensates starting
from a simple two-condensate configuration. We study the
dependence of the phase configuration of the condensate
pair upon their separation and outflow velocities and show
that they phase-lock either in symmetric or antisymmetric
states. We interpret the observation through stimulated
relaxation of polaritons to the phase configuration with the
highest polariton occupation. Previously, the coupling
mechanism was attributed to the coherent “ballistic cou-
pling” mechanism, whereby each condensate center is
resonantly pumped by the outflow from the neighboring
condensates, causing all condensates to be locked in phase
[20,21], and antisymmetric states were interpreted by one
of us (N.G.B.) as a higher energy state resulting from the
initial system noise. We generalize our results to any lattice
geometry showing how stimulated relaxation could result
in macroscopic states, where all condensates are either in-
phase or in nontrivial phase configurations. We test the
latter case in an equidistant triangle of three condensates,
where nearest neighbors are predicted to have�2π=3 phase
difference. We imprint an equidistant triangle of polariton
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condensates, and by varying the length of the edges, we
observe a transition from a trivial all-in-phase configuration
to �2π=3 phase difference between nearest neighbors. The
latter configuration corresponds to the simplest case of a
vortex across multiple sites of a polariton condensate lattice.
The article is organized as follows: In Sec. II, we describe

the sample and experimental configuration, investigate the
dynamics of a pair-polariton condensate, and provide a
phenomenological interpretation to the observed phenom-
ena. In Sec. III, we derive an analytic criterion for the phase
locking of two adjacent condensates and generalize the
findings to three or more condensates. In Sec. IV, we test our
prediction on three coupled condensates and demonstrate
lattice-vortex formation. We conclude in Sec. V.

II. POLARITON DYADS

The semiconductor microcavity structure studied here
was grown by molecular beam epitaxy and consists of a λ=2
AlAs cavity embedded between two Al0.2Ga0.8As=AlAs
distributed Bragg reflectors (DBRs) with 16 (top) and 20
(bottom) pairs, respectively. Three sets of 7-nm quantum
wells (QWs) are embedded in the antinode of the electric
field in the cavity and the first antinodes in the DBRs,
respectively. This technique results in strong light-matter
interactions at minimal cost of the cavity volume. The
quality factor of the structure is around 2000 [22]. In this
structure, the dynamics of polariton condensates have
previously been studied under pulsed excitation [23].
The excitation conditions in the experiments described in
this article are chosen so that the system is always in the
strong-coupling regime. A detailed study of the dynamics
of the transition from the strong- to the weak-coupling
regime has been studied elsewhere [7,24].
The sample is cooled to about 10 K using a cold-finger

cryostat. We excite the sample nonresonantly into the first
Bragg mode (about 0.1 eV above the cavity mode) at λ≃
730 nm using an 80-MHz train of 180-fs Fourier-limited
pulses. The spatial profile of the excitation beam is
modulated to two or three equal-sized Gaussian excitation
spots using a reflective spatial light modulator (SLM). We
use a high numerical aperture microscope objective
(NA ¼ 0.7) to focus the spatially modulated beam to
about 1.3 μm in diameter at full-width-at-half-maximum
(FWHM) excitation spots. Light emitted from the sample is
collected in reflection geometry through the same micro-
scope objective. Real- and Fourier-space (dispersion)
imaging is performed by projecting the corresponding
image plane to an imaging camera with submicron optical
resolution. Spectral real- and Fourier-space tomography is
performed by scanning the corresponding image at the slit
of a spectrophotometer coupled with an imaging camera
with 50-μeV energy resolution. Time-resolved real- and
Fourier-space imaging is performed by scanning the
corresponding image at the slit of a streak camera with
2-ps time resolution. Interference patterns between adjacent

condensates are measured using a stabilized Michelson
interferometer with one mirror replaced by a retro-reflector.
Time-resolved interferometry is performed by scanning the
interferogram at the slit of the streak camera.
We study the dynamics of phase locking between two

neighboring polariton condensates in the aforementioned
GaAs-based microcavity under nonresonant optical pulsed
excitation. Above excitation threshold, two polariton con-
densates are formed with each excitation pulse. We use the
SLM to control the distance between the two Gaussian
excitation beams, while the excitation spot size remains
unchanged. The distance between the two spots is kept
within the range where the two condensates are always
synchronized. When the two condensates are phase locked,
we refer to them as a polariton dyad. The upper row of
Fig. 1 shows the time-integrated real-space photolumines-
cence just above threshold for a polariton dyad at three
different spatial separations. The intensity pattern resem-
bles the interference of two phase-locked cylindrical waves
with wave vectors equal to the in-plane wave vector of two
resonant freely propagating polariton states. The interfer-
ence pattern indicates that the two condensates are phase

1.00.50.0

Intensity (arb. u.)

1.00.50.0
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FIG. 1. (Upper row) The time-integrated images of two polar-
iton condensates in real space at three different spatial separation
distances. The condensates are formed simultaneously at
P≃ Pth, where Pth is the threshold power for condensation.
The observation of an interference pattern between the two
condensates indicates that they are phase correlated. Zero
intensity of the interference pattern in the middle of the two
sources indicates that the two condensates are antisynchronized.
(Lower row) Time-integrated results of numerical simulations of
the Ginzburg-Landau equations with random initial phase aver-
aged over 75 realizations at separation distances between the
condensates as in the experiment above. The condensates phase
lock, on average, to zero or π phase difference depending on their
spatial separation distance.
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locked with zero or π phase difference depending on their
separation. Similar to the case of two cylindrical waves,
zero intensity of the interference pattern in the middle of the
two sources indicates that the two condensates are in
antiphase (π phase difference).
Figure 2 shows the phase difference, zero or π, for an

extended range of separation distances produced by the
SLM multiplied by the measured wave number kc of
polaritons emitted by the condensates. The phase difference
switches abruptly between in-phase and antiphase synchro-
nization with a nearly periodic dependence on the product
of the dyad’s separation distance and the wave number kc.
In Fig. 3 we plot both the real- and Fourier-space photo-
luminescence images for four different separation distan-
ces. We note that by changing the separation distance of the
pair, the condensate energy and wave vector remain
virtually unchanged. Under these conditions, the periodic-
ity of the in-phase or antiphase configurations is a function
of the separation distance. The abrupt phase jumps as a
function of the separation distance is atypical for the
conventional Josephson coupling [25]. This is opposite
to what we observe experimentally (and also numerically
by solving the Ginzburg-Landau equation with 2D
Langevin noise, as will be shown later).
The phase-locking mechanism can be phenomenologi-

cally understood when considering polariton condensation
as an inherently symmetry-breaking process driven by
stimulated relaxation into the state with the highest occupa-
tion number. Under nonresonant optical excitation, the phase
of the pumping source is irrelevant andpolaritons are initially
created with random phases uniformly distributed across the
pumping area. Injected polaritons spatially spread out
because of the repulsive polariton-polariton interactions
and,more importantly, because of their repulsive interactions
with the exciton reservoir [26].During thegradual increase of

the polariton occupation, the phase configuration across the
polariton dyad that carries the highest number of particles
will reach condensation threshold first.
The type of interference (constructive or destructive) of

the laterally out-flowing polaritons across the edge con-
necting the two pumping spots depends on the phase gained
during the flow from one pumping spot to another.
Thus, the type of interference should depend both on
the separation distance between the two spots and on the
in-plane wave vector of the out-flowing polaritons kc. To

FIG. 2. The condensates flip from antisymmetric (π phase
difference) to symmetric states (zero phase difference), shown
with black dots as a function of the product of the outflow wave
vector kc and the separation distance a. Here, we change a,
whereas kc remains virtually unchanged. The solid red curve is the
Bessel function calculated versus the dimensionless parameter kca.
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FIG. 3. Energy-resolved real- and Fourier-space images of two
condensates are shown for different separation distances. The
fringes in between the condensates are at the same energy with
the condensates.
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investigate the dependence of the phase-locking mecha-
nism on the in-plane wave vector kc, we fix the separation
distance between the two spots and increase the excitation
density nearly twice above threshold. Under the pulsed
excitation, the density of polaritons is transiently being
reduced because of the losses and so is the in-plane wave
vector kc of out-flowing polaritons. The transient nature of
this experiment allows for condensation of the polariton
dyad with fixed separation distance and varying (decreas-
ing) in time in-plane wave vector kc. We perform time-
integrated Fourier imaging of the polariton dyad and
observe condensation at two discrete energy states as
shown in Fig. 4(a). The arrows annotate the time frame
during which the respective states occur, as measured from

time-resolved measurements. We note here the abrupt
switching between the two states.
Notwithstanding that the symmetry flipping between the

two successive states is evident by the even or odd number of
nodes observed in the Fourier image of Fig. 4(a), we perform
time-resolved spatial interferometry and directly measure
their relative phases. We use an actively stabilizedMichelson
interferometer in a mirror-retroreflector configuration to
interfere with the emission of the two spots. Figure 4(b)
shows the interference fringes at the onset of condensation
(31 ps after excitation), where the condensates are in
antiphase. As time evolves, the two condensates desynchron-
ize (loss of fringe visibility) and resynchronize at a later time
(54 ps) to an in-phase configuration, as shown in Fig. 4(c).
Figure 4(d) shows the π phase jump between the two states
from the intensity profiles extracted at the blue and orange
lines of Figs. 4(b) and 4(c). We have therefore shown that the
type of interference we observe also depends on the wave
vector of the outflowing polaritons.
In the next section, we analyze the governing equations to

evaluate the in-plane wave vector of outflowing polaritons kc
in terms of the system and pumping parameters and arrive at
a criterion for phase differences between two or more
condensates, namely, maximization of the total number of
polaritons in the condensates. This criterion provides a good
agreement with the experimental observations.

III. THEORY OF PHASE LOCKING
ACROSS A LATTICE CONDENSATE

To describe the behavior of the coupled condensates, we
use the Ginzburg-Landau equation [27–29]:

iℏ
∂ψðrÞ
∂t ¼

�
−
ℏ2

2m
∇2

r þ
iℏ
2
½RRnRðrÞ − γC�

þ ℏgjψðrÞj2 þ ℏGPðrÞ
�
ψðrÞ þ ℏfðr; tÞ; ð1Þ

where ψ is the condensate wave function, m is the effective
polariton mass, RR is the incoming rate of polaritons from a
hot exciton reservoir with a local density nR to the
condensate, γC is the decay rate of polaritons, g is the
repulsive polariton-polariton interaction (pseudo)potential,
P is the spatially dependent pumping rate of excitons in the
reservoir, and G represents repulsive interactions of the
condensate with the pump. Similar to Refs. [30,31], fðr; tÞ
is the Langevin noise given by the correlator

hfðr; tÞf�ðr0; t0Þi ¼ RRnRðrÞδðt − t0Þδðr − r0Þ: ð2Þ

Equation (1) is coupled to a rate equation for the reservoir,
given by

_nRðrÞ ¼ PðrÞ − γRnRðrÞ − RRnRðrÞjψ j2; ð3Þ

FIG. 4. (a) The time-integrated momentum space shows that
condensation occurs at two distinctly different wave vectors. At
t ¼ 31 ps (marked by a blue arrow), the polariton dyad is in
antiphase synchronization. At t ¼ 54 ps (marked by an orange
arrow), the polariton dyad is in in-phase synchronization. (b,c)
Time-resolved interferograms at t ¼ 31 ps and t ¼ 54 ps, re-
spectively, showing the phase synchronization of the two con-
densates. The real-space scale bars in (b,c) apply to both
horizontal and vertical directions. The color scale in (a–c) is
shown as an inset bar in (b). The data in (a,b,c) are normalized.
(d) The intensity profiles of the interferograms at the positions
marked by the vertical lines in (b) (dashed blue) and (c) (solid
orange) provide a direct experimental observation of the pi phase
difference in the two synchronization regimes. The solid lines are
the fits of a Gaussian function convoluted with a cosðkyþ ϕÞ,
giving a phase difference of ð0.98� 0.01Þ × π between the two
states. The zero of the horizontal axis is defined at the maximum
of the intensity profile extracted from (c).

H. OHADI et al. PHYS. REV. X 6, 031032 (2016)

031032-4



where the diffusive transport of hot excitons is neglected.
The total number of condensed polaritons is

I ¼
Z

jψðrÞj2dr: ð4Þ

During the buildup of the polariton occupancy and in the
process of formation of coherence, the system will con-
dense into the state that has the maximum total number
density I.
To get the large distance behavior of a single

condensate under a radially symmetric pump PðrÞ
with maxrPðrÞ ¼ Pð0Þ≡ Pmax, we consider the steady
state of Eqs. (1) and (3): ψ ¼ ΨðrÞ exp½−iμt=ℏ� and
nR ¼ PðrÞ=ðγR þ RRjΨj2Þ, where μ is the polariton energy
that characterizes this steady state. With the Madelung
transformation Ψ ¼ ffiffiffiffiffiffiffiffiffi

ρðrÞp
exp½iSðrÞ� for the number den-

sity ρ ¼ jΨj2 and phase S, the real and imaginary parts of
Eq. (1) lead to the mass continuity and the integrated form
of the Bernoulli equation:

∇ · ðρuÞ ¼
�

RRPðrÞ
γR þ RRρðrÞ

− γC

�
ρðrÞ; ð5Þ

μ ¼ −
ℏ2

2m

∇2 ffiffiffi
ρ

p
ffiffiffi
ρ

p −
mu2

2
þ ℏgρþ ℏGPðrÞ; ð6Þ

where the velocity u ¼ ðℏ=mÞ∇SðrÞ and u ¼ juj. From
Eq. (6), it follows that u ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=m

p
away from the pumping

region. The polariton energy μ can be approximated by
assuming a sufficiently large pumping spot so that the
quantum pressure term ðℏ2=2mÞ∇2 ffiffiffi

ρ
p

=
ffiffiffi
ρ

p
and u0ð0Þ can

be neglected in view of the slow variation of u and ρ at the
center of the pumping area. From Eq. (5), we estimate

ρð0Þ ≈ Pmax

γC
−
γR
RR

; ð7Þ

and, therefore, from Eq. (6)

μ ≈
ℏg
γC

Pmax −
ℏgγR
RR

þ ℏGPmax: ð8Þ

From the parameters of the experiment, the second term is
negligible in comparison with the last term which domi-
nates. Away from the pumping spot, the wave function of a
single condensate can be approximated by

ΨðrÞ ¼
ffiffiffiffiffiffiffiffiffi
ρðrÞ

p
exp½i

ffiffiffiffiffiffiffiffiffi
2μm

p
r=ℏ�; ð9Þ

where an arbitrary constant phase can be added to the
argument of the exponent. By this, we identify the outflow
wave number kc ¼

ffiffiffiffiffiffiffiffiffi
2μm

p
=ℏ, with μ given in Eq. (8). We

approximate the wave function of two condensates of equal
size located at �a=2 by the sum of the individual wave
functions

~ΨðrÞ ¼
�
Ψ

�
rþ a

2

�
þ eiθΨ

�
r −

a
2

��
; ð10Þ

where θ is the phase difference between the two conden-
sates. The total number of condensed polaritons, Eq. (4),
becomes

I ¼
Z

j ~ΨðrÞj2dr ¼
Z

dk
ð2πÞ2 jΨ̂ðkÞj2; ð11Þ

with the Fourier transform

Ψ̂ðkÞ ¼
Z

dre−ik·r ~ΨðrÞ ¼ Ψ̂ðkÞ½eik·ða=2Þ þ eiθe−ik·ða=2Þ�;

ð12Þ

where Ψ̂ðkÞ ¼ 2π
R∞
0

ffiffiffiffiffiffiffiffiffi
ρðrÞp

exp½ikcr�J0ðkrÞrdr, and J0 is
the Bessel function. The total number of condensed
polaritons can then be written

I ¼ 2

Z
ρðrÞdrþ 1

2π2

Z
jΨ̂ðkÞj2 cosðk · a − θÞdk: ð13Þ

An analytical progress can be made by assuming that the
dimensionless quantity kcL ≫ 1, where L is the character-
istic width of the condensate density. Under this assump-
tion, jΨ̂ðkÞj2 ≈ jΨ̂ðkcÞj2δðk − kcÞ. This assumption is
supported by the direct experimental measurement of
jΨ̂ðkÞj2, which is highly localized (for instance, see the
right panel of Fig. 3). Substituting this in Eq. (13) and using
a symmetry argument gives the total number of condensed
polaritons as

I ¼ 2

Z
ρðrÞdrþ jΨ̂ðkcÞj2

2π2
cos θ

Z
δðk − kcÞ cosðk · aÞdk

¼ 2

Z
ρðrÞdrþ AJ0ðkcaÞ cos θ; ð14Þ

where A ¼ kcjΨ̂ðkcÞj2=π > 0 depends on the details of the
system parameters. For two condensates, I is maximized
for in-phase coupling if J0ðkcaÞ > 0 and for antiphase
coupling if J0ðkcaÞ < 0. The relation (14) defines the
dependence of the total number of condensed polaritons
on the phase difference between the individual conden-
sates. In the process of condensate formation, the phase
symmetry is spontaneously broken to a state that max-
imizes the total occupation number I. At each separation,
the condensates pick the state with maximum density and
flip between in-phase and antiphase states in a nearly
periodic fashion as their separation changes according to
the sign of J0ðkcaÞ, which agrees with the experimental
results depicted in Fig. 2 together with J0ðkcaÞ. In the
Appendix, we analyze the limits of applicability of the main
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assumption used in identifying the switching between
phases with zeros of J0ðkcaÞ and show that the slight
deviation of this criterion from the experimental data seen
in Fig. 2 is connected to kcL not being sufficiently
large.
Furthermore,we numerically integrate Eq. (1) using a fifth-

order Adams-Bashforth-Moulton predictor-corrector method
and the following parameters: ℏRR¼0.05μm2meV,
G¼0.0175μm2, ℏg¼0.02meVμm2, γC ¼ 0.5 ps−1, and
γR ¼ 0.01 ps−1. P is set to give the observed blueshift in
the experiment. The lower panel in Fig. 1 shows simulations
of the Ginzburg-Landau equation with random initial con-
ditions, coupled to a hot exciton reservoir excited by the
nonresonant pump [27]. Each figure is a time-integrated
average of 75 realizations. The fringes between the con-
densates are, on average, due to interference between con-
densates that are phase locked in either zero or π phase
difference.
Generalizing Eq. (14) to N condensates placed at

positions Rn and having phases θn, the total number of
condensed polaritons is given by

I ¼ N
Z

ρðrÞdrþ A
X
n<n0

cosðθn − θn0 ÞJ0ðkcjRn −Rn0 jÞ;

ð15Þ

where the summation is over all NðN − 1Þ=2 pairs. In the
case of an equilateral triangular lattice, I is maximized
when either all three neighbors are in phase for J0ðkcaÞ > 0
or when there is a 2π=3 phase difference between the
neighbors for JðkcaÞ < 0. The nontrivial case where there
is a 2π=3 phase difference going clockwise or anticlock-
wise between the neighbors corresponds to two topologi-
cally different global vortex states with a winding number
of þ1 or −1.
In the next section, we elucidate the validity of the phase-

coupling mechanism described here in the phase-locking
dynamics of three neighboring condensates positioned at
the vertices of an equilateral triangular lattice condensate.

IV. POLARITON TRIADS

We modulate the spatial profile of the excitation beam to
create three equally sized spots positioned at the vertices of
an equilateral triangle using the same experimental con-
figuration as in Sec. II. The spots are focused to about
1.3 μm in diameter measured at FWHM. As in the case of
polariton dyads, under nonresonant excitation, three polar-
iton condensates are formed at the vertices of the excitation
pattern, a polariton triad. Figures 5(a) and 5(b) show
photoluminescence spectral tomography images for two
different edge lengths of the excitation pattern. Observation
of dark and bright fringes at the energy of the condensates
indicates phase locking across the polariton triad. From the
interference pattern, we can infer that constructive

interference at the center of the triangle corresponds to
the case where the polariton triad is in an all-in-phase
configuration. The pattern of destructive interference at the
center of the triangle corresponds to the case where the
three condensates are in an out-of-phase configuration. The
two phase configurations are reproduced from numerical
simulations of Eqs. (1) and (3). Figures 5(c) and 5(d) show
the results of numerical simulations of the condensate
density averaged over 75 realizations with random initial
phase conditions and pumping profile tuned to match the
experimental condensate intensities. Examining the rela-
tionship between the maximum density and the phase
configuration of the polariton triad, we find that the total
number of condensed polaritons is maximized when either
all three neighbors are in phase [J0ðkcaÞ > 0] or when
there is a 2π=3 phase difference between neighbors
[J0ðkcaÞ < 0]. Figure 5(c) corresponds to the all-in-phase
configuration. In the nontrivial case of 2π=3 phase differ-
ence between neighbors, the numerical simulations pro-
duce two topologically distinct degenerate states that
correspond to clockwise and anticlockwise 2π=3 phase
difference between adjacent neighbors. The density profile
of Fig. 5(d) is the average of these two states, shown in
Figs. 5(e) and 5(f), respectively. Both states have near-zero
density in the center of the polariton triad. These two states
represent phase vortices across the polariton triad with
winding numbers ofþ1 or −1, shown in Fig. 5(g) and 5(h),
respectively. The formation of a polariton triad with þ1 or
−1 winding number is stochastic and thus not accessible in
the spectral tomography image of Fig. 5(b) that is the result
of the average of about 108 realizations.
In order to experimentally access the various phase

configurations, we use time-resolved spatial interferometry,
as in Sec. II, and interfere the emission of two neighbors.
We choose an edge length that at condensation threshold
results in the vortex phase configuration across the polar-
iton triad. We increase the excitation density so as to allow
for the next phase-locked state to occur, which corresponds
to the all-in-phase configuration. We time resolve the
photoluminescence pattern and observe the transition
between the two states. This transition can also be observed
through Fourier imaging (not shown here). We time resolve
the interferogram and observe a dynamical transition from
the all-in-phase state to the out-of-phase state. Figures 5(i)
and 5(j) show the interferograms when the condensates are
all-in-phase (i) and when they are out-of-phase types (j).
Figure 5(k) shows the line profiles taken from these two
interferograms that differ by about 2π=3. In previous
experimental work, under nonresonant excitation of three
condensates, only the all-in-phase configuration was
observed [21]. A vortex hexagonal lattice of alternating
þ1 and −1 vortices was predicted in Ref. [32]. In our
experiments, we observe a vortex state winding across the
polariton triad, which corresponds to the simplest vortex
condensate lattice.
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V. CONCLUSIONS

In conclusion, we study the phase-coupling mechanism
between spatially separated polariton condensates.
We demonstrate experimentally that depending on the
separation distance between condensates and the velocity
of outflowing polaritons, two condensates synchronize with
zero or π phase difference. In the bottom-up process of
polariton condensation, where the density is gradually
increasing, condensation occurs at the phase configuration
that carries the highest occupancy.
We derive the analytic criterion for the phase-locking

configuration, and our simulations show how the locking
into a particular phase difference is directly related to the
spontaneous symmetry breaking and the nonlinearity at the
condensation phase transition. In the simplest case of a
polariton dyad, the phase-coupling mechanism causes the
two condensates to couple in antiphase for J0ðkcaÞ < 0 and
to couple in phase for J0ðkcaÞ > 0.
For three pumping spots, we theoretically predicted and

experimentally demonstrated the formation of spontaneous
global vorticity that corresponds to the phase winding
among the pumping spots. The condensate array sponta-
neously picks a clockwise or anticlockwise rotating direc-
tion due to phase fluctuations at the onset of condensation.

Our observations demonstrate spontaneous symmetry
breaking in real space in a dissipative bosonic system.
All data supporting this study are openly available from

the University of Southampton repository at [33].
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APPENDIX

Here, we explore the applicability of the criterion for the
switching between in-phase and out-phase regimes
between two condensates that we derived in Sec. III.
The main assumption made is that the density of the
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FIG. 5. (a–d) Time-integrated real-space tomography images of the triangular array condensates are shown for a ¼ 4 μm (a) and
a ¼ 5.5 μm (b). The real-space scale bar of (a) also applies to (b). (c,d) Simulations of the Ginzburg-Landau equation with random
initial phase, averaged over 75 realizations at different separations matching the experimental conditions are shown. In (c), all three
condensates are in phase. In (d), we plot the average of vortices with �1 winding numbers shown in (e) and (f). The phase diagrams of
(e) and (f) are shown in (g) and (h), proving that they are indeed vortex states with winding numbers of þ1 (h) or −1 (g). (i,j) The time-
resolved interferograms resulting from the interference of neighboring condensates are shown at t ¼ 47.2 ps (i) and t ¼ 65.9 ps (j). The
color bar of (a) and (b) applies to the data of (i) and (j). (k) The intensity profiles of the interferograms along the lines marked by the
vertical lines in (i) (dashed red) and (j) (dashed black) provide a direct experimental observation of the nearly 2π=3 phase difference in
the two synchronization regimes. The line profiles of (i) and (j) taken at x ¼ −1.9 μm. The solid lines are the fits by the convolution of a
Gaussian function with cosðkyþ ϕÞ resulting in a ð0.78� 0.02Þ × π phase difference between the two fits.
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Hankel transform of the condensate wave function has a
delta-function behavior jΨ̂ðkÞj2 ≈ jΨ̂ðkcÞj2δðk − kcÞ. This
assumption is justified if kcL ≫ 1, where L is the charac-
teristic width of the condensate density and kc is the
outflow wave number. To illustrate, we consider a trial
wave function ΨðrÞ ¼ sechðqrÞ exp½ikcr�, where the
parameter q defines the FWHM L of the density jΨj2
via qL ¼ 1.76275. We form two sums with in-phase and
antiphase coupling of two condensates separated by dis-
tance d that we denote as Ψþ and Ψ−, respectively:

Ψ� ¼ Ψ

�
rþ d

2

�
�Ψ

�
r −

d
2

�
: ðA1Þ

We numerically integrate to find I� ¼ R jΨ�j2dr for two
sets of data: q ¼ 1=2 and kc ¼ 4 or kc ¼ 1, which give
kcL ≈ 14 and kcL ≈ 3.5, respectively. For each d, we
choose the phase difference that maximizes fIþ; I−g and
plot it together with J0ðkcdÞ. The resulting graphs are
shown in Fig. 6. As seen from the graphs, the criterion for
the switching according to the sign of J0ðkcdÞ is well
satisfied for the case (a) with kcL ≈ 14. For kcL ≈ 3.5, there
is some deviation from the criterion. From our experimental
data, we get kcL ≈ 4, so it is closer to Fig. 6(b) with the
same order of misalignment. We conclude, therefore, that
our analytic criterion is accurate for kcL ≫ 1.
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