Half-skyrmion spin textures in polariton microcavities

Abstract

We study the polarization dynamics of a spatially expanding polariton condensate under nonresonant linearly polarized optical excitation. The spatially and temporally resolved polariton emission reveals the formation of nontrivial spin textures in the form of a quadruplet polarization pattern both in the linear and circular Stokes parameters, and an octuplet in the diagonal Stokes parameter. The continuous rotation of the polariton pseudospin vector through the condensate due to TE-TM splitting exhibits an ordered pattern of half-skyrmions associated with a half-integer topological number. A theoretical model based on a driven-dissipative Gross-Pitaevskii equation coupled with an exciton reservoir describes the dynamics of the nontrivial spin textures through the optical spin-Hall effect.

Publication
Physical Review B